Interaction mechanisms and kinetics of ferrous ion and hexagonal birnessite in aqueous systems

نویسندگان

  • Tianyu Gao
  • Yougang Shen
  • Zhaoheng Jia
  • Guohong Qiu
  • Fan Liu
  • Yashan Zhang
  • Xionghan Feng
  • Chongfa Cai
چکیده

BACKGROUND In soils and sediments, manganese oxides and oxygen usually participate in the oxidation of ferrous ions. There is limited information concerning the interaction process and mechanisms of ferrous ions and manganese oxides. The influence of air (oxygen) on reaction process and kinetics has been seldom studied. Because redox reactions usually occur in open systems, the participation of air needs to be further investigated. RESULTS To simulate this process, hexagonal birnessite was prepared and used to oxidize ferrous ions in anoxic and aerobic aqueous systems. The influence of pH, concentration, temperature, and presence of air (oxygen) on the redox rate was studied. The redox reaction of birnessite and ferrous ions was accompanied by the release of Mn2+ and K+ ions, a significant decrease in Fe2+ concentration, and the formation of mixed lepidocrocite and goethite during the initial stage. Lepidocrocite did not completely transform into goethite under anoxic condition with pH about 5.5 within 30 days. Fe2+ exhibited much higher catalytic activity than Mn2+ during the transformation from amorphous Fe(III)-hydroxide to lepidocrocite and goethite under anoxic conditions. The release rates of Mn2+ were compared to estimate the redox rates of birnessite and Fe2+ under different conditions. CONCLUSIONS Redox rate was found to be controlled by chemical reaction, and increased with increasing Fe2+ concentration, pH, and temperature. The formation of ferric (hydr)oxides precipitate inhibited the further reduction of birnessite. The presence of air accelerated the oxidation of Fe2+ to ferric oxides and facilitated the chemical stability of birnessite, which was not completely reduced and dissolved after 18 days. As for the oxidation of aqueous ferrous ions by oxygen in air, low and high pHs facilitated the formation of goethite and lepidocrocite, respectively. The experimental results illustrated the single and combined effects of manganese oxide and air on the transformation of Fe2+ to ferric oxides. Graphical abstract:Lepidocrocite and goethite were formed during the interaction of ferrous ion and birnessite at pH 4-7. Redox rate was controlled by the adsorption of Fe2+ on the surface of birnessite. The presence of air (oxygen) accelerated the oxidation of Fe2+ to ferric oxides and facilitated the chemical stability of birnessite.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DISSOLUTION KINETICS OF MANGANESE DIOXIDE ORE IN SULFURIC ACID IN THE PRESENCE OF FERROUS ION

Abstract: In this paper, kinetics of reductive leaching of manganese dioxide ore by ferrous ion in sulfuric acid media has been examined. Experimental results show that increasing temperature from 20 to 60 °C and decreasing ore particle size from −16+20 to −60+100 mesh considerably enhance both the dissolution rate and efficiency. Molar ratios of Fe2+/MnO2 and H2SO4/MnO2 in excess to the st...

متن کامل

Application of response surface methodology for thorium(IV) removal using Amberlite IR-120 and IRA-400: Ion exchange equilibrium and kinetics

In this work, thorium (IV) removal from aqueous solutions was investigated in batch systems of cationic and anionic resins of Amberlite IR-120 and IRA-400. In this way, the effects of pH, initial Th(IV) concentration and the amount of adsorbent were investigated. A Central Composite Design (CCD) under Response Surface Methodology (RSM) was employed to determine the optimized condition. The resu...

متن کامل

Aqueous Cadmium Ions Removal by Adsorption on APTMS Grafted Mesoporous Silica MCM-41 in Batch and Fixed Bed Column Processes

Highly ordered mesoporous MCM-41silica with hexagonal structure was synthesized using extracted amorphous silica from sedge (Carex riparia) ash. Obtained mesoporous materials functionalized by 3-(Aminopropyl) trimethoxysilane (APTMS) and their structures characterized by means of X-ray diffraction (XRD), nitrogen adsorption-desorption, thermogravimetric analysis (TGA) and Fourier transform infr...

متن کامل

Electrode Materials for Lithium Ion Batteries: A Review

Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...

متن کامل

Detoxification of phenol through bound residue formation by birnessite in soil: transformation kinetics and toxicity.

Oxidative coupling reaction of phenol mediated by birnessite was studied in aqueous phase and soil. Phenol was readily transformed by birnessite and almost all phenol disappeared in both samples after 24 hours of reaction. Phenol transformation kinetics was investigated by plotting reaction time against logarithm concentrations of residual phenol, revealing that exponential decrease of phenol w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2015